Delayed transcapillary transport of insulin to muscle interstitial fluid in obese subjects.

نویسندگان

  • Mikaela Sjöstrand
  • Soffia Gudbjörnsdottir
  • Agneta Holmäng
  • Lars Lönn
  • Lena Strindberg
  • Peter Lönnroth
چکیده

Insulin-resistant subjects have a slow onset of insulin action, and the underlying mechanism has not been determined. To evaluate whether a delayed transcapillary transport is part of the peripheral insulin resistance, we followed the kinetics of infused insulin and inulin in plasma and muscle interstitial fluid in obese insulin-resistant patients and control subjects. A total of 10 lean and 10 obese men (BMI 24 +/- 0.8 vs. 32 +/- 0.8 kg/m(2), P < 0.001) was evaluated during a hyperinsulinemic-euglycemic clamp (insulin infusion rate 120 mU. m(-2). min(-1)) combined with an inulin infusion. Measurements of insulin and inulin in plasma were taken by means of arterial-venous catheterization of the forearm and microdialysis in brachioradialis muscle combined with forearm blood flow measurements with vein occlusion pletysmography. The obese subjects had a significantly lower steady-state glucose infusion rate and, moreover, demonstrated a delayed appearance of insulin (time to achieve half-maximal concentration [T(1/2)] 72 +/- 6 vs. 46 +/- 6 min in control subjects, P < 0.05) as well as inulin (T(1/2) 83 +/- 3 vs. 53 +/- 7 min, P < 0.01) in the interstitial fluid. Also, the obese subjects had a delayed onset of insulin action (T(1/2) 70 +/- 9 vs. 45 +/- 5 min in control subjects, P < 0.05), and their forearm blood flow rate was significantly lower. These results demonstrate a delayed transcapillary transport of insulin and inulin from plasma to the muscle interstitial fluid and a delayed onset of insulin action in insulin-resistant obese subjects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Delayed transcapillary delivery of insulin to muscle interstitial fluid after oral glucose load in obese subjects.

Obese subjects exhibit a delay in insulin action and delivery of insulin to muscle interstitial fluid during glucose/insulin infusion. The aim of the present study was to follow the distribution of insulin to skeletal muscle after an oral glucose load in obese subjects. We conducted an oral glucose tolerance test (OGTT) in 10 lean and 10 obese subjects (BMI 23 +/- 0.6 vs. 33 +/- 1.2 kg/m(2); P ...

متن کامل

Mode of transcapillary transport of insulin and insulin analog NN304 in dog hindlimb: evidence for passive diffusion.

A defect in transcapillary transport of insulin in skeletal muscle and adipose tissue has been proposed to play a role in the insulin resistance that leads to type 2 diabetes, yet the mechanism of insulin transfer across the capillary endothelium from plasma to interstitium continues to be debated. This study examined in vivo the interstitial appearance of insulin in hindlimb using the fatty ac...

متن کامل

Estimations of muscle interstitial insulin, glucose, and lactate in type 2 diabetic subjects.

Previous measurement of insulin in human muscle has shown that interstitial muscle insulin and glucose concentrations are approximately 30-50% lower than in plasma during hyperinsulinemia in normal subjects. The aims of this study were to measure interstitial muscle insulin and glucose in patients with type 2 diabetes to evaluate whether transcapillary transport is part of the peripheral insuli...

متن کامل

Delayed insulin transport across endothelium in insulin-resistant JCR:LA-cp rats.

Capillary endothelial cells are thought to limit the transport of insulin across the endothelium, resulting in attenuated insulin action at target sites. Whether endothelial insulin transport is altered in dysglycemic insulin-resistant states is not clear and was therefore investigated in the JCR:LA-cp corpulent male rat, which exhibits the metabolic syndrome of obesity, insulin resistance, hyp...

متن کامل

Lipid-Induced Insulin Resistance Is Not Mediated by Impaired Transcapillary Transport of Insulin and Glucose in Humans

Increased lipid availability reduces insulin-stimulated glucose disposal in skeletal muscle, which is generally explained by fatty acid-mediated inhibition of insulin signaling. It remains unclear whether lipids also impair transcapillary transport of insulin and glucose, which could become rate controlling for glucose disposal. We hypothesized that lipid-induced insulin resistance is induced b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 51 9  شماره 

صفحات  -

تاریخ انتشار 2002